Гость
Имя

Пароль



Вы не зарегистрированны?
Нажмите здесь для регистрации.

Забыли пароль?
Запросите новый здесь.
Сейчас на сайте
Гостей: 6
На сайте нет зарегистрированных пользователей

Пользователей: 556
Посетитель: Json

Последние посетители

GMan199051 недель
Viktor325 недель
Rusya_kazax447 недель
kiv451 недель
Alexander458 недель
arkonas465 недель
klikazavr470 недель
xGRIZLIx497 недель
storm500 недель
vladimir220585502 недель
счетчик
6. АППАРАТЫ СИЛОВОЙ ЦЕПИ. ТОКОПРИЕМНИКИ. БЫСТРОДЕЙСТВУЮЩИЕ ВЫКЛЮЧАТЕЛИ.

6.1.Токоприемники

  Силовая цепь электровоза соединяется через токоприемник с контактной сетью, в которую поступает электрическая энергия от тяговой подстанции. Контакт между токоприемником и контактным проводом осуществляется не в одной постоянной точке, как в стационарных установках; точка контакта перемещается вдоль провода вместе с локомотивом.

  Основным условием надежной работы токоприемника, или, как говорят специалисты, высокого качества токосъема, является прежде всего постоянство нажатия токоприемника на контактный провод. Разумеется, чем больше нажатие, тем надежней скользящий контакт. Но, с другой стороны, большое нажатие увеличивает механический износ провода и контактного устройства токоприемника. В то же время чрезмерно малое нажатие приводит к искрению и даже к образованию электрической дуги, что вызывает электрический износ контактных поверхностей проводов и токоприемника и возникновение помех в различных линиях связи.

  В соответствии с Правилами технической эксплуатации железных дорог нормальная высота подвески контактного провода над уровнем головки рельса принята равной 6600 мм на станциях и 6250 мм на перегонах. В исключительных случаях это расстояние в пределах искусственных сооружений, расположенных на путях станций, а также на перегонах с разрешения Министерства путей сообщения (МПС) может быть уменьшено до 5675 мм на участках переменного тока и до 5550 мм при постоянном токе. Высота подвески контактного провода во всех случаях не должна превышать 6800 мм. Следовательно, в самых неблагоприятных условиях токоприемник должен опускаться или подниматься на 6800— 5550= 1250 мм, обеспечивая при этом постоянный электрический контакт с проводом. Кроме того, чтобы создать безопасные условия для персонала, производящего осмотр или ремонт электровоза, необходимо иметь возможность опускать и вновь поднимать токоприемник до соприкосновения с контактным проводом.

  Рассмотрим одну из конструкций токоприемника электровоза постоянного тока (рис. 27, а). Чтобы поднять токоприемник, машинист с помощью специального аппарата (клапана токоприемника) открывает доступ сжатому воздуху в цилиндр (рис. 27, б). Поршень цилиндра, перемещаясь в крайнее левое положение, штоком поворачивает рычаг, с которым связана тяга и опускающая пружина. Тяга, перемещаясь влево, отходит от фасонного кронштейна, и две растянутые поднимающие пружины поднимают нижнюю и верхнюю рамы, связанные шарнирно. Профиль фасонного кронштейна обеспечивает вначале быстрый подъем токоприемника, а в конце медленный для мягкого соприкосновения его с проводом.

  Для того чтобы опустить токоприемник, цилиндр, наполненный воздухом, сообщают с атмосферой. Тогда опускающая пружина, которая была сжата при подъеме токоприемника под действием поршня и рычага, разжавшись, переместит поршень в крайнее правое положение и одновременно через тягу с роликом воздействует на фасонный кронштейн. Главные валы под действием усилия, приложенного к этому кронштейну, и силы тяжести подвижной части, преодолев сопротивление поднимающих пружин, повернутся и токоприемник опустится.

  Вначале токоприемник должен опускаться очень быстро, чтобы разорвать электрическую дугу, которая может образоваться при отрыве полозов от контактного провода, а затем медленно, чтобы рама плавно (без удара) опустилась на амортизаторы. Это обеспечивается соответствующим очертанием фасонного кронштейна и быстрым выпуском сжатого воздуха из цилиндра в начальный период. В некоторых конструкциях токоприемников вместо фасонного кронштейна используют редуктор, который изменяет давление сжатого воздуха, поступающего в цилиндр или выходящего из него, в зависимости от положения рам.

  Основание токоприемника устанавливают на изоляторах. Обычно на электровозах имеется два электрически соединенных токоприемника. Как правило, в процессе работы поднят задний из них по направлению движения локомотива.

  Полозы токоприемника специальным механизмом, называемым кареткой (см. рис. 27, б), крепят к раме. Каретки предназначены для улучшения токосъема при проходе точек, где крепится контактный провод (жесткие точки), обеспечения упругости полозов в горизонтальном направлении и равномерного распределения нажатия между ними. Для этого применены пружины и шарнирные соединения.

  К рабочим поверхностям полозов крепят сменные контактные пластины — контактные вставки или накладки. Они должны иметь малое электрическое сопротивление, быть износостойкими и по возможности меньше изнашивать контактный провод. В современных токоприемниках применяют угольные вставки, медные и металлокерамические накладки.

  Нажатие полозов токоприемника на контактный провод в среднем составляет 98—128 Н (10—13 кгс). Качество токосъема будет высоким, если нажатие полозов на контактный провод независимо от высоты его подвески не изменяется. Это обеспечивается применением шариковых и игольчатых подшипников, снижением массы подвижных частей путем использования прочных тонкостенных труб.

6.2. Разъединители и быстродействующие выключатели

  В тех случаях, когда персонал осматривает электрическое оборудование электровоза, для обеспечения безопасности работающих опускают токоприемник. Чтобы исключить случайную подачу напряжения, например, в случае самопроизвольного подъема токоприемника или обрыва контактного провода над токоприемником в силовую цепь включают разъединители — по одному на каждый токоприемник. Разъединитель (рис. 28) отключают вручную из кузова электровоза.

  Нарушение изоляции и возникновение в связи с этим короткого замыкания, а также недопустимая перегрузка в цепи вызывают очень большой ток, который может привести к серьезным повреждениям оборудования. Токи короткого замыкания настолько велики, что могут сгореть или разрушиться даже самые толстые провода, шины и другие токоведущие части. Возникающие при коротком замыкании механические силы взаимодействия между проводниками с током разрушают изоляторы и другие детали электротехнических установок. Поэтому все электрические цепи, как правило, тем или иным способом защищают от токов короткого замыкания и перегрузок.

  Простейшие защитные аппараты — плавкие предохранители — включают последовательно с защищаемой цепью; плавкая вставка их перегорает при токах, превышающих допустимые, так как имеет площадь сечения, меньшую, чем любой проводник в защищаемой цепи.

  Защитить плавким предохранителем силовую цепь электровоза, рассчитанную на большие токи, невозможно. При коротком замыкании ток растет очень быстро (рис. 29), а плавкая вставка сгорает не сразу. Она обладает так называемой тепловой инерцией. При очень большом токе и высоком напряжении даже после того, как плавкая вставка сгорит, между зажимами, где она была включена, может возникнуть электрическая дуга.
Следовательно, нужен такой защитный аппарат, который при коротких замыканиях или перегрузках был бы в состоянии в минимальное время разрывать защищаемую цепь и быстро гасить электрическую дугу. На электровозах постоянного тока для этой цели служат быстродействующие автоматические выключатели (БВ). С помощью БВ, кроме того, силовую цепь электровоза отключают от контактной сети и подключают к ней. Такие включения и отключения называют оперативными.

  Машинист, нажав кнопку БВ (рис. 30, а), замыкает цепь удерживающей катушки быстродействующего выключателя. Кнопка остается включенной; она не снабжена пружиной, возвращающей ее в первоначальное положение. Затем машинист кратковременно нажимает на кнопку Возврат БВ, контакты которой замыкают цепь катушки электропневматического вентиля (рис. 30, б). Под действием поля, создаваемого электромагнитом вентиля, его якорь перемещается и открывает доступ сжатому воздуху в цилиндр привода быстродействующего выключателя. Заметим, что электропневматический вентиль называют включающим, если при прохождении тока через его катушку клапаны соединяют аппарат (в данном случае цилиндр) с источником сжатого воздуха.

  Сжатый воздух давит на поршень в цилиндре привода быстродействующего выключателя и передвигает его вправо. Шток поршня с роликом на конце нажимает на контактный рычаг. Перед началом движения поршня контактный рычаг с подвижным контактом оттянут выключающей пружиной в крайнее левое положение и опирается верхней частью на упор. Это положение рычагов быстродействующего выключателя показано на рис. 30, а. Контактный и якорный рычаги имеют в точке А шарнирное соединение. Когда ролик штока под действием перемещающегося поршня начинает нажимать на контактный рычаг, последний сначала поворачивается относительно точки А, не отрываясь от упора. Поворот происходит до тех пор, пока контактный рычаг не коснется рычага якоря рядом с осью Б. После этого оба рычага поворачиваются вместе вокруг оси Б. Рычаги поворачиваются до тех пор, пока якорь не будет прижат к полюсам магнитопровода.

  Однако в этот момент подвижной контакт, находящийся в верхней части рычага якоря, отойдет от упора, но еще не коснется неподвижного контакта и, следовательно, силовая цепь не будет замкнута. Сколько бы времени машинист не продолжал нажимать на кнопку Возврат БВ, подвижной и неподвижный контакты не замкнутся, так как ролик штока, упираясь в контактный рычаг, не даст ему повернуться относительно точки А по часовой стрелке в крайнее правое положение и замкнуть силовую цепь электровоза.
Это сделано не случайно. Предположим, что включение быстродействующего выключателя производится при коротком замыкании в силовой цепи. Даже если машинист сразу заметит, что в силовой цепи возникла неисправность, пройдет некоторое время, пока он отпустит кнопку и подвижной контакт под действием выключающей пружины начнет отходить от неподвижного. Скорость движения подвижного контакта будет сравнительно небольшой, так как выключающая пружина должна преодолеть сопротивление сил трения, возникающих при вращении включающего рычага, и переместить влево поршень в цилиндре. За это время ток короткого замыкания успеет резко возрасти и вызвать значительные повреждения. Во избежание этого быстродействующий выключатель конструируют так, чтобы окончательно его контакты замыкались только после того, как машинист отпустит кнопку Возврат БВ и она своими контактами разорвет цепь электромагнита электропневматического вентиля.

  Катушка электромагнита вентиля будет обесточена и полость цилиндра привода соединится с атмосферой. Сжатый воздух выйдет из цилиндра, и пружина, расположенная внутри него, переместит поршень в крайнее левое положение. Однако выключающая пружина после этого не возвратит контактный рычаг и рычаг якоря в крайнее левое положение, так как якорь притянут магнитным потоком удерживающей катушки к полюсам ее магнитопровода. Наоборот, под действием выключающей пружины контактный рычаг поворачивается относительно точки А, подвижной и неподвижный контакты замыкаются. Теперь ток из контактной сети через токоприемник, дугогасящую катушку, неподвижный и подвижной контакты, гибкий шунт, размагничивающий виток, навитый на стальной сердечник, пойдет в силовую цепь к тяговым двигателям.

  Магнитный поток Фраз, создаваемый размагничивающим витком, направлен встречно потоку Фуд, создаваемому удерживающей катушкой в левой части магнитопровода, и согласно потоку, создаваемому этой же катушкой в правой части. При аварийном режиме в результате резкого увеличения тока через размагничивающий виток, включенный последовательно в силовую цепь, встречный магнитный поток настолько возрастет, что поток Фуд не сможет удержать якорь. Под действием выключающей пружины якорь оторвется от магнитопровода, и подвижной контакт с большой скоростью отойдет от неподвижного.

  Размагничивающее действие витка усиливается при наличии индуктивного шунта, включенного параллельно ему. Поскольку индуктивное сопротивление шунта больше индуктивного сопротивления размагничивающего витка, при резком нарастании тока большая его часть проходит через размагничивающий виток, вызывая резкое увеличение Фраз и уменьшение электромагнитных сил, притягивающих рычаг якоря, что ведет к снижению времени выключения БВ.

  В момент разрыва цепи между контактами возникает электрическая дуга. Ее необходимо погасить как можно быстрее. Если допустить длительное горение дуги, то по цепи значительное время будет проходить ток короткого замыкания или перегрузки, что может вызвать серьезные повреждения электрического оборудования. Чтобы быстрее погасить дугу, необходимо резко увеличить электрическое сопротивление в ее цепи. Для этого следовало бы не только мгновенно развести контакты, но и удалить их друг от друга на возможно большее расстояние. Обычно в электрических аппаратах электровозов вследствие ограниченных размеров развести контакты на большое расстояние не представляется возможным. Однако можно удлинить дугу, выдувая ее за пределы контактов. В большинстве электрических аппаратов электровозов это осуществляют с помощью так называемого магнитного дутья.

  Электрическая дуга выталкивается магнитным полем, создаваемым специальной дугогасительной катушкой. Ее витки включают в цепь последовательно с контактами (см. рис. 30, а). Следовательно, по катушке проходит разрываемый выключателем ток. Для того чтобы как можно дальше отбросить дугу, катушку дополняют стальными пластинами (полюсными наконечниками), расширяя тем самым область действия магнитного поля катушки.

  Чтобы контакты не оплавлялись, рядом с ними устанавливают дугогасительные рога, на которые выдувается дуга. Затем она перемещается в верхнюю часть разведенных рогов потоком нагретого дугой воздуха, где и гасится. Гашению дуги во многом способствует интенсивное ее охлаждение. Поэтому рога закрывают дугогасительной камерой (рис. 31) со стенками из огнеупорного материала — асбоцемента, обладающего большой теплоемкостью. Для увеличения интенсивности охлаждения дуги в камере делают продольные перегородки, расщепляющие дугу на отдельные параллельные ветви. Устраивают также и поперечные перегородки, способствующие удлинению дуги.

  Быстродействующий выключатель регулируют на определенный токI уст в защищаемой цепи, по достижении которого он срабатывает. Этот ток называют уставкой быстродействующего выключателя. После того как ток достигнет значения уставки (см. рис. 29), через время tc, которое называют собственным временем выключателя, начнут расходиться контакты. Собственное время, например, для БВ, установленного на электровозе ВЛ10, составляет 0,0015—0,003 с, и ток не успевает достигнуть опасного значения. Уставку выключателя регулируют с помощью специальных винтов (см. рис. 31), которые ввинчивают в магнитопровод удерживающей катушки или вывинчивают из него, изменяя тем самым площадь сечения магнитопровода, а следовательно, и сопротивление прохождению магнитного потока удерживающей катушки.

  Ток уставки БВ зависит от мощности локомотива; например, для электровоза ВЛ10 он равен 3100 А с допустимыми отклонениями в сторону увеличения на + 100 А и уменьшения на — 50 А.


Содержание

Комментарии
Нет комментариев.
Добавить комментарий
Пожалуйста зарегистрируйтесь, или войдите под своим логином для добавления комментария.
Статьи